Problem Definition
In a cartesian co-ordinate frame of reference, a system of n particles are subject to h 'holonomic' constraints and r 'non-holonomic' constraints
m=h+r
fi(x,t)=0,i=1,2,...,h
Given h holonomic constraints, it is possible to express h components of vector x in terms of the remaining (3n−h) components, regarding these components as independent and able to fully define the system.
j=1∑j=3ndij(x,t)x˙j+gi(x,t)=0,i=1,2,...,m
dij(x,t)=∂xj∂fi(x,t)
gi(x,t)=∂t∂fi(x,t)
Expressed in matrix form:
D(x,t)x˙j=g
Equation of Motion
Ma=F
Mx¨=F+Fc
- a - Unconstrained acceleration
- x¨ - Constrained acceleration
- F - Impressed force
- Fc - Constraint force
Virtual Displacements
For a given system position of x(t), if a velocity x˙(t) satisfies all the conditions of the constraints, it is is called a "possible velocity". There are infinitely many possible velocities.
Integrating this with time we obtain a "possible infinitesimal displacement".
δx(t)=x˙dt
Dδx=0
Ideal Constraints
(Also known as "D'Alembarts principle", "Basic Equation of Analytical Mechanics")
The physical work done by a constraint force in the vector direction of a possible motion is zero.
δxTFc=δxT(Mx¨−F)=0
Generalised Coordinate Transforms
The (3n−h) co-ordinates used to describe a system needn't be Cartesian.
xi=f(q1,q2,...,q3n−h,t),i=1,2,...,3n
δxi=j=1∑j=s∂qj∂xi⋅δqj
x˙i=j=1∑s∂qj∂xi⋅q˙j+∂t∂xi
∂q˙j∂x˙i=∂qj∂xi
∂qj∂x˙i=m=1∑s∂qm∂qj∂2xiq˙m+∂t∂qj∂2xi=dtd(∂qj∂xi)
dtd(x˙i∂qj∂xi)=x¨i∂qj∂xi+x˙i(dtd∂qj∂xi)
x¨i⋅∂qj∂xi=dtd(x˙i∂qj∂xi)−x˙i∂qj∂x˙i=dtd(x˙i∂q˙j∂x˙i)−x˙i∂qj∂x˙i
Forces in generalized co-ordinates:
Qj=i=1∑3nFi∂yj∂xi
Expressions for Kinetic Energy
Note: these are not several stages of a calculation. They are derived independently.
T=21i=1∑3nmixi˙2
∂q˙j∂T=i=1∑3nmi(xi˙∂q˙j∂x˙i)
dtd(∂q˙j∂T)=dtdi=1∑3nmi(xi˙∂q˙j∂x˙i)
∂qj∂T=i=1∑3nmi(xi˙∂qj∂x˙i)
i=1∑3nmix¨i∂qj∂xi=dtdi=1∑3nmi(x˙i∂q˙j∂x˙i)−i=1∑3nmix˙i∂qj∂x˙i
i=1∑3nmix¨i∂qj∂xi=dtd∂q˙j∂T−∂qj∂T
Lagrange Equations of Motion for Unconstrained Systems
δxT(Mx¨−F)=i=1∑3n(mix¨i−Fi)δx=0
i=1∑3n(mix¨i−Fi)j=1∑j=s∂qj∂xiδqj=0
j=1∑s[i=1∑3n(mixi¨−Fi)∂yj∂xi]δqj=0
j=1∑s[dtd∂q˙j∂T−∂qj∂T−Qj]δqj=0
If the constraints are only of the holonomic type and the minimum number of generalized coordinates are used (3n−h)
dtd∂q˙j∂T−∂qj∂T−Qj=0
Generalized potential energy function
V=f(q1,q2,...,qs,q˙1,q˙2,...,q˙s)
Qjc=−∂qj∂V+dtd(∂q˙j∂V)
Qj=Qjc+Qjnc
L=(T−V)
- V - Generalized potential energy function of the system
- Qjc - Conservative part of total generalized force
- Qjnc - Non-Conservative part of total generalized force. These are usually externally impressed forces
- L - "Lagrangian" / "Kinetic Potential" of a system
Plugging in expression for the Lagrangian & generalized force:
dtd(∂q˙j∂L+∂q˙j∂V)−(∂qj∂L+∂qj∂V)−[−∂qj∂V+dtd(∂q˙j∂V)]−Qjnc=0
dtd(∂q˙j∂L)−(∂qj∂L)−Qjnc=0